Problem Solving: Use Objects and Reasoning

Each cube has a volume of $1 \mathrm{~cm}^{3}$.
The area of one face of the cube is $1 \mathrm{~cm}^{2}$.
The surface area of the cube is the sum of the area of each face of the cube.

To find the surface area of a figure of cubes, count only the faces that are exposed.
$V=2(1 \times 1 \times 1)=2 \mathrm{~cm}^{3}$
$S A=10\left(1 \mathrm{~cm}^{2}\right)=10 \mathrm{~cm}^{2}$
The arrangement of cubes can affect the surface area, but the same number of cubes will always have the same volume.

1. Find the volume and surface area of the figure.
2. Make a figure of cubes that has a volume of
 $7 \mathrm{~cm}^{3}$ and a surface area of $26 \mathrm{~cm}^{2}$. Draw your figure.
3. Reasoning Explain how you know how many cubes to use to make the figure in problem 2.
4. Find the volume and surface area of the figure.

5. Geometry If the cubes in problem 4 were increased to 3 cm on a side, how would the volume and surface area be affected?
